User talk:180.190.60.236/Mixed arrow notation

Add topic
From TestWiki

The table uses base-3 (trinary) form for use of hyper operators, so we even use the exponents

The total sum of it is

Number 1 2 3
Notation


Exponents[edit source]

Exponent
Notation Equivalent to Equality? Decomposition
a↑b1,

a↓b2, a ↕ b3

True

,

for


Variable Notes[edit source]

There are 3 arrangements in it

->exp(a+(2*pi*i*k)/(log(b)+2*pi*i*n)*(ln(b)+2*pi*i*n)))

->exp((log(b)+2*pi*i*n)/a)

->(log(a)+2*pi*i*k)/(log(b)+2*pi*i*n)

We use subscripts if they are more than one variable of the same letter (example: a,a, it changes to a1,a2)


On tetration, it is similar, but we use subscripts to avoid confusion with others and has a similar periodicity

Tetration[edit source]

Tetration
Notation Equivalent to Equality? Decomposition
a↑↑b1 (4),

a↓↑b2 (5), a@↑b3 (6)

The power towers True
a↑↓b4 (7),

a↓↓b5 (8), a@↓b6 (9)

Left but weak tetration
True

Tetration if

a↑↕b7 (10),

a↓↕b8 (11), a↕↕b9 (12)

As to exponents, except both left and right True

There are and arrangements of compositions

Examples[edit source]

Inverses[edit source]

See Inverse functions, here

Extensions[edit source]

See Extensions, here

Special cases[edit source]

Notes[edit source]

This seems to be a comparison of these functions, but seems to be like an ever-expanding universe


Pentation[edit source]

Pentation
Notation Equivalent to Equality? Decomposition
a↓↓↓b1 (13),

a↑↓↓b10 (22), a↕↓↓b19 (31)

(a↓↓↓(b-1))1 (13)↓↓a5 (8),

(a↑↓↓(b-1))10 (22)↑↓b4 (7), (a↕↓↓(b-1))19 (31)↕↓b6 (9)

a↓↑↓b4 (16),

a↑↑↓b13 (25), a↕↑↓b22 (34)

(a↓↑↓(b-1))4 (16)↓↑a2 (5),

(a↑↑↓(b-1))13 (25)↑↑a1 (4), (a↕↑↓(b-1))22 (34)↕↑a3 (6)

a↓↕↓b7 (19),

a↑↕↓b16 (28), a↕↕↓b25 (37)

(a↓↕↓(b-1))7 (19)↓↕a8 (11),

(a↑↕↓(b-1))16 (28)↑↕a7 (10), (a↕↕↓(b-1))25 (37)↕↕ a9 (12)

a↓↓↑b2 (14),

a↑↓↑b11 (23), a↕↓↑b20 (32)

a↓↓↑5 (8)(a↓↓↑(b-1)2 (14)),

a↑↓4 (7)(a↑↓↑(b-1)11 (23)), a↕↓6 (9)(a↕↓↑(b-1)20 (32))

a↓↑↑b5 (17),

a↑↑↑b14 (26), a↕↑↑b23 (35)

a↑↑1 (4)(a↑↑↑(b-1)14 (26)),

a↓↑2 (5)(a↓↑↑(b-1)5 (17)), a↕↑3 (6)(a↕↑↑(b-1)23 (35))

a↓↕↑b8 (20),

a↓↕↑b17 (29), a↕↕↑b26 (38)

a↑↕7 (10)(a↑↕↑(b-1)17 (29)),

a↓↕8 (11)(a↓↕↑(b-1)8 (20)), a↕↕9 (12)(a↕↕↑(b-1)26 (38))

a↓↓↕b3 (15),

a↑↓↕b12 (24), a↕↓↕b21 (33)

(a↓↓↕(b-1)3 (15))↓↓5 (8)(a↓↓↕(b-1)3 (15)), (a↑↓↕(b-1)12 (24))↑↓4 (7)(a↑↓↕(b-1)12 (24)), (a↕↓↕(b-1)21 (33))↕↓6 (9)(a↕↓↕(b-1)21 (33))
a↓↑↕b6 (18),

a↑↑↕b15 (27), a↕↑↕b24 (36)

(a↓↑↕(b-1)6 (18))↓↑2 (5)(a↓↑↕(b-1)6 (18)),

(a↑↑↕(b-1)15 (27))↑↑1 (4)(a↑↑↕(b-1)15 (27)), (a↕↑↕(b-1)24 (36))↕↑3 (6)(a↕↑↕(b-1)24 (36))

a↓↕↕b9 (21),

a↑↕↕b18 (30), a↕↕↕b27 (39)

(a↓↕↕(b-1)9 (21))↓↕8 (11)(a↓↕↕(b-1)9 (21)), (a↑↕↕(b-1)18 (30))↑↕7 (10)(a↑↕↕(b-1)18 (30)), (a↕↕↕(b-1)27 (39))↕↕9 (12)(a↕↕↕(b-1)27 (39))

There are and arrangements of compositions, unlike Tetration

We won't take hexation because it is 3^4 is 81, so it would take long

On special cases, Underline is multivalued

Values[edit source]

Besides 1, 0 and infinity, the pentation has special values

Special cases[edit source]

A special case regarding is equal to the base raised to height of tetration

Tetration[edit source]

a↑↑-1=0

a↓↓-1=1/0=Error (for somewhat \frac{log(b)}{log(x)} \text{at} x = 1)

a↑↑0=a↓↓0=a↕↕0 (for assuming b is an integer)=1

a↑↑1=a↓↓1=a↕↕1=a

1↑↑b=1↓↓b=1↕↕b=1*

0↑↑b (for )=0↓↓b (for )=0↕↕b=1*

0↑↑b (for )=0↓↓b (for )=0*

Pentation[edit source]

[Work in progress]



Higher Hyper-operators[edit source]

If a notation ends in down-arrow (↓), then, it is left-associative

If a notation ends in up-arrow (↑), then, it is right-associative

If a notation ends in up/down arrows (↕), then, it would be a combination of both left and right associativity, ending up in a ↕ b = (a ↕ (b-1)) ↕ (a ↕ (b-1))

Evaluation[edit source]

See here

Combining operators[edit source]

Is it possible to combine a lower operator and higher operator, but even same level or higher operator and lower operator, but results are different

Aside from lower, and higher operators, we have the rules for combining

If the left argument is one, then simplify it into one

If the right argument is one, then retain the number

Same level of hyper operator[edit source]

Left variant[edit source]

(a↑↑b)↑↑c ~ a↑↑↓3

(a↑↑b)↓↓c

(a↑↑b)↕↕c

(a↓↓b)↑↑c

(a↓↓b)↓↓c ~ a↓↓↓3

(a↓↓b)↕↕c

(a↕↕b)↑↑c

(a↕↕b)↓↓c

(a↕↕b)↕↕c ~ a↕↕↓3

Right variant[edit source]

a↑↑(b↑↑c) ~ a↑↑↑3

a↑↑(b↓↓c)

a↑↑(b↕↕c)

a↓↓(b↑↑c)

a↓↓(b↓↓c) ~ a↓↓↑3

a↓↓(b↕↕c)

a↕↕(b↓↓c)

a↕↕(b↑↑c)

a↕↕(b↕↕c) ~ a↕↕↑3

Both arguments[edit source]

(a↑↑b)↑↑(c↑↑d) ~ a↑↑↕3

(a↑↑b)↑↑(c↓↓d)

(a↑↑b)↑↑(c↕↕d)

(a↓↓b)↓↓(c↑↑d)

(a↓↓b)↓↓(c↓↓d) ~ a↓↓↕3

(a↓↓b)↓↓(c↕↕d)

(a↕↕b)↕↕(c↓↓d)

(a↕↕b)↕↕(c↑↑d)

(a↕↕b)↕↕(c↕↕d) ~ a↕↕↕3

Combining higher and lower hyper operator[edit source]

Left variant[edit source]

(a↑↑↑b)↑↑c

(a↑↑↑b)↓↓c

(a↑↑↑b)↕↕c

(a↓↓↓b)↑↑c

(a↓↓↓b)↓↓c

(a↓↓↓b)↕↕c

(a↕↕↕b)↑↑c

(a↕↕↕b)↓↓c

(a↕↕↕b)↕↕c

Right variant[edit source]

a↑↑↑(b↑↑c)

a↑↑↑(b↓↓c)

a↑↑↑(b↕↕c)

a↓↓↓(b↑↑c)

a↓↓↓(b↓↓c)

a↓↓↓(b↕↕c)

a↕↕↕(b↑↑c)

a↕↕↕(b↓↓c)

a↕↕↕(b↕↕c)

Both arguments, with a middle lower[edit source]

(a↑↑↑b)↑↑(c↑↑d)

(a↑↑↑b)↑↑(c↓↓d)

(a↑↑↑b)↑↑(c↕↕d)

(a↓↓↓b)↓↓(c↑↑d)

(a↓↓↓b)↓↓(c↓↓d)

(a↓↓↓b)↓↓(c↕↕d)

(a↕↕↕b)↕↕(c↑↑d)

(a↕↕↕b)↕↕(c↓↓d)

(a↕↕↕b)↕↕(c↕↕d)

Both arguments, with a middle higher[edit source]

(a↑↑↑b)↑↑↑(c↑↑d)

(a↑↑↑b)↑↑↑(c↓↓d)

(a↑↑↑b)↑↑↑(c↕↕d)

(a↓↓↓b)↓↓↓(c↑↑d)

(a↓↓↓b)↓↓↓(c↓↓d)

(a↓↓↓b)↓↓↓(c↕↕d)

(a↕↕↕b)↕↕↕(c↑↑d)

(a↕↕↕b)↕↕↕(c↓↓d)

(a↕↕↕b)↕↕↕(c↕↕d)

Combining lower and higher hyper operator[edit source]

Left variant[edit source]

(a↑↑b)↑↑↑c

(a↑↑b)↓↓↓c

(a↑↑b)↕↕↕c

(a↓↓b)↑↑↑c

(a↓↓b)↓↓↓c

(a↓↓b)↕↕↕c

(a↕↕b)↑↑↑c

(a↕↕b)↓↓↓c

(a↕↕b)↕↕↕c

Right variant[edit source]

a↑↑(b↑↑↑c)

a↑↑(b↓↓↓c)

a↑↑(b↕↕↕c)

a↓↓(b↑↑↑c)

a↓↓(b↓↓↓c)

a↓↓(b↕↕↕c)

a↕↕(b↑↑↑c)

a↕↕(b↓↓↓c)

a↕↕(b↕↕↕c)

Both arguments, with a middle lower[edit source]

(a↑↑b)↑↑(c↑↑↑d)

(a↑↑b)↑↑(c↓↓↓d)

(a↑↑b)↑↑(c↕↕↕d)

(a↓↓b)↓↓(c↑↑↑d)

(a↓↓b)↓↓(c↓↓↓d)

(a↓↓b)↓↓(c↕↕↕d)

(a↕↕b)↕↕(c↑↑↑d)

(a↕↕b)↕↕(c↓↓↓d)

(a↕↕b)↕↕(c↕↕↕d)

Both arguments, with a middle upper[edit source]

(a↑↑b)↑↑↑(c↑↑↑d)

(a↑↑b)↑↑↑(c↓↓↓d)

(a↑↑b)↑↑↑(c↕↕↕d)

(a↓↓b)↓↓↓(c↑↑↑d)

(a↓↓b)↓↓↓(c↓↓↓d)

(a↓↓b)↓↓↓(c↕↕↕d)

(a↕↕b)↕↕↕(c↑↑↑d)

(a↕↕b)↕↕↕(c↓↓↓d)

(a↕↕b)↕↕↕(c↕↕↕d)