User talk:180.190.60.236/Mixed arrow notation
Add topicThe table uses base-3 (trinary) form for use of hyper operators, so we even use the exponents
The total sum of it is
Number | 1 | 2 | 3 |
---|---|---|---|
Notation | ↑ | ↓ | ↕ |
Exponents[edit source]
Notation | Equivalent to | Equality? | Decomposition |
---|---|---|---|
a↑b1,
a↓b2, a ↕ b3 |
True |
, for |
Variable Notes[edit source]
There are 3 arrangements in it
->exp(a+(2*pi*i*k)/(log(b)+2*pi*i*n)*(ln(b)+2*pi*i*n)))
->exp((log(b)+2*pi*i*n)/a)
->(log(a)+2*pi*i*k)/(log(b)+2*pi*i*n)
We use subscripts if they are more than one variable of the same letter (example: a,a, it changes to a1,a2)
On tetration, it is similar, but we use subscripts to avoid confusion with others and has a similar periodicity
Tetration[edit source]
Notation | Equivalent to | Equality? | Decomposition |
---|---|---|---|
a↑↑b1 (4),
a↓↑b2 (5), a@↑b3 (6) |
The power towers | True | |
a↑↓b4 (7),
a↓↓b5 (8), a@↓b6 (9) |
Left but weak tetration |
True |
Tetration if |
a↑↕b7 (10),
a↓↕b8 (11), a↕↕b9 (12) |
As to exponents, except both left and right | True |
There are and arrangements of compositions
Examples[edit source]
Inverses[edit source]
Extensions[edit source]
See Extensions, here
Special cases[edit source]
Notes[edit source]
This seems to be a comparison of these functions, but seems to be like an ever-expanding universe
Pentation[edit source]
Notation | Equivalent to | Equality? | Decomposition |
---|---|---|---|
a↓↓↓b1 (13),
a↑↓↓b10 (22), a↕↓↓b19 (31) |
(a↓↓↓(b-1))1 (13)↓↓a5 (8),
(a↑↓↓(b-1))10 (22)↑↓b4 (7), (a↕↓↓(b-1))19 (31)↕↓b6 (9) | ||
a↓↑↓b4 (16),
a↑↑↓b13 (25), a↕↑↓b22 (34) |
(a↓↑↓(b-1))4 (16)↓↑a2 (5),
(a↑↑↓(b-1))13 (25)↑↑a1 (4), (a↕↑↓(b-1))22 (34)↕↑a3 (6) | ||
a↓↕↓b7 (19),
a↑↕↓b16 (28), a↕↕↓b25 (37) |
(a↓↕↓(b-1))7 (19)↓↕a8 (11),
(a↑↕↓(b-1))16 (28)↑↕a7 (10), (a↕↕↓(b-1))25 (37)↕↕ a9 (12) | ||
a↓↓↑b2 (14),
a↑↓↑b11 (23), a↕↓↑b20 (32) |
a↓↓↑5 (8)(a↓↓↑(b-1)2 (14)),
a↑↓4 (7)(a↑↓↑(b-1)11 (23)), a↕↓6 (9)(a↕↓↑(b-1)20 (32)) | ||
a↓↑↑b5 (17),
a↑↑↑b14 (26), a↕↑↑b23 (35) |
a↑↑1 (4)(a↑↑↑(b-1)14 (26)),
a↓↑2 (5)(a↓↑↑(b-1)5 (17)), a↕↑3 (6)(a↕↑↑(b-1)23 (35)) | ||
a↓↕↑b8 (20),
a↓↕↑b17 (29), a↕↕↑b26 (38) |
a↑↕7 (10)(a↑↕↑(b-1)17 (29)),
a↓↕8 (11)(a↓↕↑(b-1)8 (20)), a↕↕9 (12)(a↕↕↑(b-1)26 (38)) | ||
a↓↓↕b3 (15),
a↑↓↕b12 (24), a↕↓↕b21 (33) |
(a↓↓↕(b-1)3 (15))↓↓5 (8)(a↓↓↕(b-1)3 (15)), (a↑↓↕(b-1)12 (24))↑↓4 (7)(a↑↓↕(b-1)12 (24)), (a↕↓↕(b-1)21 (33))↕↓6 (9)(a↕↓↕(b-1)21 (33)) | ||
a↓↑↕b6 (18),
a↑↑↕b15 (27), a↕↑↕b24 (36) |
(a↓↑↕(b-1)6 (18))↓↑2 (5)(a↓↑↕(b-1)6 (18)),
(a↑↑↕(b-1)15 (27))↑↑1 (4)(a↑↑↕(b-1)15 (27)), (a↕↑↕(b-1)24 (36))↕↑3 (6)(a↕↑↕(b-1)24 (36)) | ||
a↓↕↕b9 (21),
a↑↕↕b18 (30), a↕↕↕b27 (39) |
(a↓↕↕(b-1)9 (21))↓↕8 (11)(a↓↕↕(b-1)9 (21)), (a↑↕↕(b-1)18 (30))↑↕7 (10)(a↑↕↕(b-1)18 (30)), (a↕↕↕(b-1)27 (39))↕↕9 (12)(a↕↕↕(b-1)27 (39)) |
There are and arrangements of compositions, unlike Tetration
We won't take hexation because it is 3^4 is 81, so it would take long
On special cases, Underline is multivalued
Values[edit source]
Besides 1, 0 and infinity, the pentation has special values
Special cases[edit source]
A special case regarding is equal to the base raised to height of tetration
Tetration[edit source]
a↑↑-1=0
a↓↓-1=1/0=Error (for somewhat \frac{log(b)}{log(x)} \text{at} x = 1)
a↑↑0=a↓↓0=a↕↕0 (for assuming b is an integer)=1
a↑↑1=a↓↓1=a↕↕1=a
1↑↑b=1↓↓b=1↕↕b=1*
0↑↑b (for )=0↓↓b (for )=0↕↕b=1*
0↑↑b (for )=0↓↓b (for )=0*
Pentation[edit source]
[Work in progress]
Higher Hyper-operators[edit source]
If a notation ends in down-arrow (↓), then, it is left-associative
If a notation ends in up-arrow (↑), then, it is right-associative
If a notation ends in up/down arrows (↕), then, it would be a combination of both left and right associativity, ending up in a ↕ b = (a ↕ (b-1)) ↕ (a ↕ (b-1))
Evaluation[edit source]
See here
Combining operators[edit source]
Is it possible to combine a lower operator and higher operator, but even same level or higher operator and lower operator, but results are different
Aside from lower, and higher operators, we have the rules for combining
If the left argument is one, then simplify it into one
If the right argument is one, then retain the number
Same level of hyper operator[edit source]
Left variant[edit source]
(a↑↑b)↑↑c ~ a↑↑↓3
(a↑↑b)↓↓c
(a↑↑b)↕↕c
(a↓↓b)↑↑c
(a↓↓b)↓↓c ~ a↓↓↓3
(a↓↓b)↕↕c
(a↕↕b)↑↑c
(a↕↕b)↓↓c
(a↕↕b)↕↕c ~ a↕↕↓3
Right variant[edit source]
a↑↑(b↑↑c) ~ a↑↑↑3
a↑↑(b↓↓c)
a↑↑(b↕↕c)
a↓↓(b↑↑c)
a↓↓(b↓↓c) ~ a↓↓↑3
a↓↓(b↕↕c)
a↕↕(b↓↓c)
a↕↕(b↑↑c)
a↕↕(b↕↕c) ~ a↕↕↑3
Both arguments[edit source]
(a↑↑b)↑↑(c↑↑d) ~ a↑↑↕3
(a↑↑b)↑↑(c↓↓d)
(a↑↑b)↑↑(c↕↕d)
(a↓↓b)↓↓(c↑↑d)
(a↓↓b)↓↓(c↓↓d) ~ a↓↓↕3
(a↓↓b)↓↓(c↕↕d)
(a↕↕b)↕↕(c↓↓d)
(a↕↕b)↕↕(c↑↑d)
(a↕↕b)↕↕(c↕↕d) ~ a↕↕↕3
Combining higher and lower hyper operator[edit source]
Left variant[edit source]
(a↑↑↑b)↑↑c
(a↑↑↑b)↓↓c
(a↑↑↑b)↕↕c
(a↓↓↓b)↑↑c
(a↓↓↓b)↓↓c
(a↓↓↓b)↕↕c
(a↕↕↕b)↑↑c
(a↕↕↕b)↓↓c
(a↕↕↕b)↕↕c
Right variant[edit source]
a↑↑↑(b↑↑c)
a↑↑↑(b↓↓c)
a↑↑↑(b↕↕c)
a↓↓↓(b↑↑c)
a↓↓↓(b↓↓c)
a↓↓↓(b↕↕c)
a↕↕↕(b↑↑c)
a↕↕↕(b↓↓c)
a↕↕↕(b↕↕c)
Both arguments, with a middle lower[edit source]
(a↑↑↑b)↑↑(c↑↑d)
(a↑↑↑b)↑↑(c↓↓d)
(a↑↑↑b)↑↑(c↕↕d)
(a↓↓↓b)↓↓(c↑↑d)
(a↓↓↓b)↓↓(c↓↓d)
(a↓↓↓b)↓↓(c↕↕d)
(a↕↕↕b)↕↕(c↑↑d)
(a↕↕↕b)↕↕(c↓↓d)
(a↕↕↕b)↕↕(c↕↕d)
Both arguments, with a middle higher[edit source]
(a↑↑↑b)↑↑↑(c↑↑d)
(a↑↑↑b)↑↑↑(c↓↓d)
(a↑↑↑b)↑↑↑(c↕↕d)
(a↓↓↓b)↓↓↓(c↑↑d)
(a↓↓↓b)↓↓↓(c↓↓d)
(a↓↓↓b)↓↓↓(c↕↕d)
(a↕↕↕b)↕↕↕(c↑↑d)
(a↕↕↕b)↕↕↕(c↓↓d)
(a↕↕↕b)↕↕↕(c↕↕d)
Combining lower and higher hyper operator[edit source]
Left variant[edit source]
(a↑↑b)↑↑↑c
(a↑↑b)↓↓↓c
(a↑↑b)↕↕↕c
(a↓↓b)↑↑↑c
(a↓↓b)↓↓↓c
(a↓↓b)↕↕↕c
(a↕↕b)↑↑↑c
(a↕↕b)↓↓↓c
(a↕↕b)↕↕↕c
Right variant[edit source]
a↑↑(b↑↑↑c)
a↑↑(b↓↓↓c)
a↑↑(b↕↕↕c)
a↓↓(b↑↑↑c)
a↓↓(b↓↓↓c)
a↓↓(b↕↕↕c)
a↕↕(b↑↑↑c)
a↕↕(b↓↓↓c)
a↕↕(b↕↕↕c)
Both arguments, with a middle lower[edit source]
(a↑↑b)↑↑(c↑↑↑d)
(a↑↑b)↑↑(c↓↓↓d)
(a↑↑b)↑↑(c↕↕↕d)
(a↓↓b)↓↓(c↑↑↑d)
(a↓↓b)↓↓(c↓↓↓d)
(a↓↓b)↓↓(c↕↕↕d)
(a↕↕b)↕↕(c↑↑↑d)
(a↕↕b)↕↕(c↓↓↓d)
(a↕↕b)↕↕(c↕↕↕d)
Both arguments, with a middle upper[edit source]
(a↑↑b)↑↑↑(c↑↑↑d)
(a↑↑b)↑↑↑(c↓↓↓d)
(a↑↑b)↑↑↑(c↕↕↕d)
(a↓↓b)↓↓↓(c↑↑↑d)
(a↓↓b)↓↓↓(c↓↓↓d)
(a↓↓b)↓↓↓(c↕↕↕d)
(a↕↕b)↕↕↕(c↑↑↑d)
(a↕↕b)↕↕↕(c↓↓↓d)
(a↕↕b)↕↕↕(c↕↕↕d)